Tsinghua University
Abstract:Pathomics is a recent approach that offers rich quantitative features beyond what black-box deep learning can provide, supporting more reproducible and explainable biomarkers in digital pathology. However, many derived features (e.g., "second-order moment") remain difficult to interpret, especially across different clinical contexts, which limits their practical adoption. Conditional diffusion models show promise for explainability through feature editing, but they typically assume feature independence**--**an assumption violated by intrinsically correlated pathomics features. Consequently, editing one feature while fixing others can push the model off the biological manifold and produce unrealistic artifacts. To address this, we propose a Manifold-Aware Diffusion (MAD) framework for controllable and biologically plausible cell nuclei editing. Unlike existing approaches, our method regularizes feature trajectories within a disentangled latent space learned by a variational auto-encoder (VAE). This ensures that manipulating a target feature automatically adjusts correlated attributes to remain within the learned distribution of real cells. These optimized features then guide a conditional diffusion model to synthesize high-fidelity images. Experiments demonstrate that our approach is able to navigate the manifold of pathomics features when editing those features. The proposed method outperforms baseline methods in conditional feature editing while preserving structural coherence.
Abstract:Graph anomaly detection (GAD) is crucial in applications like fraud detection and cybersecurity. Despite recent advancements using graph neural networks (GNNs), two major challenges persist. At the model level, most methods adopt a transductive learning paradigm, which assumes static graph structures, making them unsuitable for dynamic, evolving networks. At the data level, the extreme class imbalance, where anomalous nodes are rare, leads to biased models that fail to generalize to unseen anomalies. These challenges are interdependent: static transductive frameworks limit effective data augmentation, while imbalance exacerbates model distortion in inductive learning settings. To address these challenges, we propose a novel data-centric framework that integrates dynamic graph modeling with balanced anomaly synthesis. Our framework features: (1) a discrete ego-graph diffusion model, which captures the local topology of anomalies to generate ego-graphs aligned with anomalous structural distribution, and (2) a curriculum anomaly augmentation mechanism, which dynamically adjusts synthetic data generation during training, focusing on underrepresented anomaly patterns to improve detection and generalization. Experiments on five datasets demonstrate that the effectiveness of our framework.
Abstract:Recent advancements in Large Language Models (LLMs) have largely focused on depth scaling, where a single agent solves long-horizon problems with multi-turn reasoning and tool use. However, as tasks grow broader, the key bottleneck shifts from individual competence to organizational capability. In this work, we explore a complementary dimension of width scaling with multi-agent systems to address broad information seeking. Existing multi-agent systems often rely on hand-crafted workflows and turn-taking interactions that fail to parallelize work effectively. To bridge this gap, we propose WideSeek-R1, a lead-agent-subagent framework trained via multi-agent reinforcement learning (MARL) to synergize scalable orchestration and parallel execution. By utilizing a shared LLM with isolated contexts and specialized tools, WideSeek-R1 jointly optimizes the lead agent and parallel subagents on a curated dataset of 20k broad information-seeking tasks. Extensive experiments show that WideSeek-R1-4B achieves an item F1 score of 40.0% on the WideSearch benchmark, which is comparable to the performance of single-agent DeepSeek-R1-671B. Furthermore, WideSeek-R1-4B exhibits consistent performance gains as the number of parallel subagents increases, highlighting the effectiveness of width scaling.
Abstract:Existing Knowledge Distillation (KD) methods often align feature information between teacher and student by exploring meaningful feature processing and loss functions. However, due to the difference in feature distributions between the teacher and student, the student model may learn incompatible information from the teacher. To address this problem, we propose teacher-guided student Diffusion Self-KD, dubbed as DSKD. Instead of the direct teacher-student alignment, we leverage the teacher classifier to guide the sampling process of denoising student features through a light-weight diffusion model. We then propose a novel locality-sensitive hashing (LSH)-guided feature distillation method between the original and denoised student features. The denoised student features encapsulate teacher knowledge and could be regarded as a teacher role. In this way, our DSKD method could eliminate discrepancies in mapping manners and feature distributions between the teacher and student, while learning meaningful knowledge from the teacher. Experiments on visual recognition tasks demonstrate that DSKD significantly outperforms existing KD methods across various models and datasets. Our code is attached in supplementary material.
Abstract:Telecommunication networks are increasingly expected to operate autonomously while supporting heterogeneous services with diverse and often conflicting intents -- that is, performance objectives, constraints, and requirements specific to each service. However, transforming high-level intents -- such as ultra-low latency, high throughput, or energy efficiency -- into concrete control actions (i.e., low-level actuator commands) remains beyond the capability of existing heuristic approaches. This work introduces an Agentic AI system for intent-driven autonomous networks, structured around three specialized agents. A supervisory interpreter agent, powered by language models, performs both lexical parsing of intents into executable optimization templates and cognitive refinement based on feedback, constraint feasibility, and evolving network conditions. An optimizer agent converts these templates into tractable optimization problems, analyzes trade-offs, and derives preferences across objectives. Lastly, a preference-driven controller agent, based on multi-objective reinforcement learning, leverages these preferences to operate near the Pareto frontier of network performance that best satisfies the original intent. Collectively, these agents enable networks to autonomously interpret, reason over, adapt to, and act upon diverse intents and network conditions in a scalable manner.
Abstract:Reinforcement Learning (RL) has empowered Multimodal Large Language Models (MLLMs) to achieve superior human preference alignment in Image Quality Assessment (IQA). However, existing RL-based IQA models typically rely on coarse-grained global views, failing to capture subtle local degradations in high-resolution scenarios. While emerging "Thinking with Images" paradigms enable multi-scale visual perception via zoom-in mechanisms, their direct adaptation to IQA induces spurious "cropping-implies-degradation" biases and misinterprets natural depth-of-field as artifacts. To address these challenges, we propose Q-Probe, the first agentic IQA framework designed to scale IQA to high resolution via context-aware probing. First, we construct Vista-Bench, a pioneering benchmark tailored for fine-grained local degradation analysis in high-resolution IQA settings. Furthermore, we propose a three-stage training paradigm that progressively aligns the model with human preferences, while simultaneously eliminating causal bias through a novel context-aware cropping strategy. Extensive experiments demonstrate that Q-Probe achieves state-of-the-art performance in high-resolution settings while maintaining superior efficacy across resolution scales.
Abstract:User behavior modeling lies at the heart of personalized applications like recommender systems. With LLM-based agents, user preference representation has evolved from latent embeddings to semantic memory. While existing memory mechanisms show promise in textual dialogues, modeling non-textual behaviors remains challenging, as preferences must be inferred from implicit signals like clicks without ground truth supervision. Current approaches rely on a single unstructured summary, updated through simple overwriting. However, this is suboptimal: users exhibit multi-faceted interests that get conflated, preferences evolve yet naive overwriting causes forgetting, and sparse individual interactions necessitate collaborative signals. We present STEAM (\textit{\textbf{ST}ructured and \textbf{E}volving \textbf{A}gent \textbf{M}emory}), a novel framework that reimagines how agent memory is organized and updated. STEAM decomposes preferences into atomic memory units, each capturing a distinct interest dimension with explicit links to observed behaviors. To exploit collaborative patterns, STEAM organizes similar memories across users into communities and generates prototype memories for signal propagation. The framework further incorporates adaptive evolution mechanisms, including consolidation for refining memories and formation for capturing emerging interests. Experiments on three real-world datasets demonstrate that STEAM substantially outperforms state-of-the-art baselines in recommendation accuracy, simulation fidelity, and diversity.
Abstract:Language models are revolutionizing the biochemistry domain, assisting scientists in drug design and chemical synthesis with high efficiency. Yet current approaches struggle between small language models prone to hallucination and limited knowledge retention, and large cloud-based language models plagued by privacy risks and high inference costs. To bridge this gap, we introduce ChemCRAFT, a novel framework leveraging agentic reinforcement learning to decouple chemical reasoning from knowledge storage. Instead of forcing the model to memorize vast chemical data, our approach empowers the language model to interact with a sandbox for precise information retrieval. This externalization of knowledge allows a locally deployable small model to achieve superior performance with minimal inference costs. To enable small language models for agent-calling ability, we build an agentic trajectory construction pipeline and a comprehensive chemical-agent sandbox. Based on sandbox interactions, we constructed ChemToolDataset, the first large-scale chemical tool trajectory dataset. Simultaneously, we propose SMILES-GRPO to build a dense chemical reward function, promoting the model's ability to call chemical agents. Evaluations across diverse aspects of drug design show that ChemCRAFT outperforms current cloud-based LLMs in molecular structure analysis, molecular optimization, and synthesis pathway prediction, demonstrating that scientific reasoning is not solely an emergent ability of model scale, but a learnable policy of tool orchestration. This work establishes a cost-effective and privacy-preserving paradigm for AI-aided chemistry, opening new avenues for accelerating molecular discovery with locally deployable agents.
Abstract:As LLMs increasingly function as economic agents, the specific mechanisms LLMs use to update their belief with heterogeneous signals remain opaque. We design experiments and develop a Behavioral Kalman Filter framework to quantify how LLM-based agents update expectations, acting as households or firm CEOs, update expectations when presented with individual and aggregate signals. The results from experiments and model estimation reveal four consistent patterns: (1) agents' weighting of priors and signals deviates from unity; (2) both household and firm CEO agents place substantially larger weights on individual signals compared to aggregate signals; (3) we identify a significant and negative interaction between concurrent signals, implying that the presence of multiple information sources diminishes the marginal weight assigned to each individual signal; and (4) expectation formation patterns differ significantly between household and firm CEO agents. Finally, we demonstrate that LoRA fine-tuning mitigates, but does not fully eliminate, behavioral biases in LLM expectation formation.
Abstract:Diffusion Transformers have recently demonstrated remarkable performance in video generation. However, the long input sequences result in high computational latency due to the quadratic complexity of full attention. Various sparse attention mechanisms have been proposed. Training-free sparse attention is constrained by limited sparsity and thus offers modest acceleration, whereas training-based methods can reach much higher sparsity but demand substantial data and computation for training. In this work, we propose SALAD, introducing a lightweight linear attention branch in parallel with the sparse attention. By incorporating an input-dependent gating mechanism to finely balance the two branches, our method attains 90% sparsity and 1.72x inference speedup, while maintaining generation quality comparable to the full attention baseline. Moreover, our finetuning process is highly efficient, requiring only 2,000 video samples and 1,600 training steps with a batch size of 8.